Combining Supervised-Unsupervised Methods for Word Sense Disambiguation

نویسندگان

  • Andrés Montoyo
  • Armando Suárez
  • Manuel Palomar
چکیده

This paper presents a method to combine two unsupervised methods (Specification Marks, Conceptual Density) and one supervised (Maximum Entropy) for the automatic resolution of lexical ambiguity of nouns in English texts. The main objective is to improved the accuracy of knowledge-based methods with statistical information supplied by the corpus-based method. We explore a way of combining the classification results of the three methods: “voting” is the way we have chosen to combine the three methods in one unique decision. These three methods have been applied both individually as in a combined way to disambiguate a set of polysemous words. Our results show that a combination of different knowledge-based methods and the addition of statistical information from a corpus-based method might eventually lead to improve accuracy of first ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Supervised and Unsupervised Lexical Knowledge Methods for Word Sense Disambiguation

This work combines a set of available techniques – which could be further extended – to perform noun sense disambiguation. We use several unsupervised techniques (Rigau et al., 1997) that draw knowledge from a variety of sources. In addition, we also apply a supervised technique in order to show that supervised and unsupervised methods can be combined to obtain better results. This paper tries ...

متن کامل

Combining Unsupervised and Supervised Methods for PP Attachment Disambiguation

Statistical methods for PP attachment fall into two classes according to the training material used: first, unsupervised methods trained on raw text corpora and second, supervised methods trained on manually disambiguated examples. Usually supervised methods win over unsupervised methods with regard to attachment accuracy. But what if only small sets of manually disambiguated material are avail...

متن کامل

Unsupervised WSD based on Automatically Retrieved Examples: The Importance of Bias

This paper explores the large-scale acquisition of sense-tagged examples for Word Sense Disambiguation (WSD). We have applied the “WordNet monosemous relatives” method to construct automatically a web corpus that we have used to train disambiguation systems. The corpus-building process has highlighted important factors, such as the distribution of senses (bias). The corpus has been used to trai...

متن کامل

Learning Probabilistic Models of Word Sense Disambiguation

This dissertation presents several new methods of supervised and unsupervised learning of word sense disambiguation models. The supervised methods focus on performing model searches through a space of probabilistic models, and the unsupervised methods rely on the use of Gibbs Sampling and the Expectation Maximization (EM) algorithm. In both the supervised and unsupervised case, the Naive Bayesi...

متن کامل

Combining Supervised and Unsupervised

This work combines a set of available techniques {which could be further extended{ to perform noun sense disambiguation. We use several unsupervised techniques (Rigau et al., 1997) that draw knowledge from a variety of sources. In addition, we also apply a supervised technique, in order to show that supervised and unsupervised methods can be combined to obtain better results. This paper tries t...

متن کامل

An Approach to Word Sense Disambiguation Combining Modified Lesk and Bag-of-words

In this paper, we are going to propose a technique to find meaning of words using Word Sense Disambiguation using supervised and unsupervised learning. This limitation of information is main flaw of the supervised approach. Our proposed approach focuses to overcome the limitation using learning set which is enriched in dynamic way maintaining new data. We introduce a mixed methodology having “M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002